Critical Care Obstetrics
Critical Care Obstetrics

EDITED BY

MICHAEL A. BELFORT MBBCH, MD, PhD
Professor of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, UT; Director of Perinatal Research, Director of Fetal Therapy, HCA Healthcare, Nashville, TN, USA

GEORGE SAADE MD
Professor of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA

MICHAEL R. FOLEY MD
Chief Medical Officer, Scottsdale Healthcare, Scottsdale, Arizona; Clinical Professor, Department of Obstetrics and Gynecology, University of Arizona College of Medicine, Tucson, AR, USA

JEFFREY P. PHELAN MD, JD
Director of Quality Assurance, Department of Obstetrics and Gynecology, Citrus Valley Medical Center, West Covina; President and Director, Clinical Research, Childbirth Injury Prevention Foundation, City of Industry, Pasadena, CA, USA

GARY A. DILDY, III MD
Director, Maternal-Fetal Medicine, Mountain Star Division, Hospital Corporation of America, Salt Lake City, UT; Clinical Professor, Department of Obstetrics and Gynecology, LSU Health Sciences Center, School of Medicine in New Orleans, New Orleans, LA, USA

FIFTH EDITION

WILEY-BLACKWELL
A John Wiley & Sons, Ltd., Publication
Contents

List of contributors, vii
1 Epidemiology of Critical Illness in Pregnancy, 1
 Cande V. Ananth & John C. Smulian
2 Organizing an Obstetric Critical Care Unit, 11
 Julie Scott & Michael R. Foley
3 Critical Care Obstetric Nursing, 16
 Suzanne McMurtry Baird & Nan H. Troiano
4 Pregnancy-Induced Physiologic Alterations, 30
 Errol R. Norwitz & Julian N. Robinson
5 Maternal–Fetal Blood Gas Physiology, 53
 Renee A. Bobrowski
6 Fluid and Electrolyte Balance, 69
 William E. Scorza & Anthony Scardella
7 Cardiopulmonary Resuscitation in Pregnancy, 93
 Andrea Shields & M. Bardett Fausett
8 Neonatal Resuscitation, 108
 Christian Con Yost & Ron Bloom
9 Ventilator Management in Critical Illness, 124
 Luis D. Pacheco & Labib Ghulmiyyah
10 Vascular Access, 152
 Gayle Olson & Aristides P. Koutrouvelis
11 Blood Component Replacement, 165
 David A. Sacks
12 Hyperalimentation, 181
 Jeffrey P. Phelan & Kent A. Martyn
13 Dialysis, 188
 Shad H. Deering & Gail L. Seiken
14 Cardiopulmonary Bypass, 196
 Katherine W. Arendt
15 Non-Invasive Monitoring, 207
 Michael Cackovic & Michael A. Belfort
16 Pulmonary Artery Catheterization, 215
 Steven L. Clark & Gary A. Dildy III
17 Seizures and Status Epilepticus, 222
 Michael W. Varner
18 Acute Spinal Cord Injury, 228
 Chad Kendall Klauser, Sheryl Roñts-Palenik & James N. Martin, Jr
19 Pregnancy-Related Stroke, 235
 Edward W. Veillon, Jr & James N. Martin, Jr
20 Cardiac Disease, 256
 Michael R. Foley, Roxann Rokey & Michael A. Belfort
21 Thromboembolic Disease, 283
 Donna Dizon-Townson
22 Etiology and Management of Hemorrhage, 308
 Irene Stafford, Michael A. Belfort & Gary A. Dildy III
23 Severe Acute Asthma, 327
 Michael A. Belfort & Melissa Herbst
24 Acute Lung Injury and Acute Respiratory Distress Syndrome (ARDS) During Pregnancy, 338
 Antara Mallampalli, Nicola A. Hanania & Kalpalatha K. Guntupalli
25 Pulmonary Edema, 348
 William C. Mabie
26 The Acute Abdomen During Pregnancy, 358
 Howard T. Sharp
27 Acute Pancreatitis, 365
 Shailen S. Shah & Jeffrey P. Phelan
28 Acute Renal Failure, 376
 Shad H. Deering & Gail L. Seiken
29 Acute Fatty Liver of Pregnancy, 385
 T. Flint Porter
List of Contributors

C. David Adair
Professor and Vice-Chair
Division of Maternal-Fetal Medicine
Department of Obstetrics and Gynecology
University of Tennessee College of Medicine
Chattanooga, TN, USA

Cande V. Ananth
Division of Epidemiology and Biostatistics
Department of Obstetrics, Gynecology and Reproductive Sciences
UMDNJ – Robert Wood Johnson Medical School
New Brunswick, NJ, USA

Katherine W. Arendt
Assistant Professor of Anesthesiology
Mayo Clinic
Rochester, MN, USA

Kelty R. Baker
Department of Internal Medicine
Hematology-Oncology Section and Baylor College of Medicine
Houston, TX, USA

Robert H. Ball
HCA Fetal Therapy Initiative
St Mark’s Hospital
Salt Lake City and
Division of Perinatal Medicine and Genetics
Departments of Obstetrics
Gynecology and Reproductive Sciences
UCSF Fetal Treatment Center
University of California
San Francisco, CA, USA

Michael A. Belfort
Professor of Obstetrics and Gynecology
Department of Obstetrics and Gynecology
Division of Maternal-Fetal Medicine
University of Utah School of Medicine
Salt Lake City, UT and
Director of Perinatal Research
Director of Fetal Therapy
HCA Healthcare
Nashville, TN, USA

Ron Bloom
Professor of Pediatrics
Department of Neonatology
University of Utah Health Sciences
Salt Lake City, UT, USA

Renee A. Bobrowski
Director of Maternal-Fetal Medicine and Women and Children's Services
Department of Obstetrics and Gynecology
Saint Alphonsus Regional Medical Center
Boise, ID, USA

D. Ware Branch
Professor
Department of Obstetrics and Gynecology
University of Utah Health Sciences Center and
Medical Director
Women and Newborns Services
Intermountain Healthcare
Salt Lake City, UT, USA

Michael Cackovic
Division of Maternal-Fetal Medicine
Department of Obstetrics, Gynecology and Reproductive Sciences
Yale University School of Medicine
New Haven, CT, USA

Shobana Chandrasekhar
Associate Professor
Department of Anesthesiology
Baylor College of Medicine
Houston, TX, USA

Christian Con Yost
Assistant Professor of Pediatrics
Department of Neonatology
University of Utah Health Sciences
Salt Lake City, UT, USA

Shad H. Deering
Adjunct Assistant Professor
Department of Obstetrics and Gynecology
Uniformed Services University of the Health Sciences
Old Madigan Army Medical Center
Tacoma, WA, USA

Gary A. Dildy III
Director
Maternal-Fetal Medicine
Mountain Star Division
Hospital Corporation of America
Salt Lake City, UT and
Clinical Professor
Department of Obstetrics and Gynecology
LSU Health Sciences Center
School of Medicine in New Orleans
New Orleans, LA, USA

Donna Dizon-Townson
Associate Professor
Department of Obstetrics and Gynecology
University of Utah Health Sciences Center
Salt Lake City, UT and
Medical Director Clinical Programs Urban South Region
Intermountain Healthcare
Department of Maternal-Fetal Medicine
Provo, UT, USA

M. Bardett Fausett
Consultant to the AF Surgeon General for Obstetrics and Maternal-Fetal Medicine and
Chief, Obstetrics and Maternal-Fetal Medicine
San Antonio Military Medical Center and
Vice-Chairman, Department of Obstetrics and Gynecology, Wilford Hall Medical Center
Lackland Airforce Base, TX, USA
List of Contributors

Ellen Flynn
Clinical Assistant Professor of Psychiatry and Human Behavior
Alpert Medical School of Brown University
Women and Infants Hospital
Providence, RI, USA

Michael R. Foley
Chief Medical Officer
Scotsdale Healthcare
Scottsdale, Arizona and
Clinical Professor
Department of Obstetrics and Gynecology
University of Arizona College of Medicine
Tucson, AZ, USA

Jeffrey M. Fowler
Director
Division of Gynecologic Oncology
John G. Boutselis Professor
Department of Obstetrics and Gynecology
James Cancer Hospital and Solove Research Institute
The Ohio State University
Columbus, OH, USA

Alfredo F. Gei
Department of Obstetrics and Gynecology
Methodist Hospital in Houston, Houston, TX, USA

Labib Ghulmiyyah
Fellow
Maternal-Fetal Medicine
Department of Obstetrics and Gynecology
University of Texas Medical Branch
Galveston, TX, USA

Cornelia R. Graves
Medical Director
Tennessee Maternal-Fetal Medicine PLC and
Director of Perinatal Service
Baptist Hospital and
Clinical Professor
Vanderbilt University
Nashville, TN, USA

Kalpalatha K. Guntupalli
Section of Pulmonary Critical Care and Sleep Medicine
Baylor College of Medicine
Houston, TX, USA

Nicola A. Hanania
Section of Pulmonary Critical Care, and Sleep Medicine
Baylor College of Medicine
Houston, TX, USA

Melissa Herbst
Maternal-Fetal Services of Utah
St. Mark’s Hospital
Salt Lake City, UT, USA

Calla Holmgren
Department of Obstetrics and Gynecology
University of Utah Medical Center
Salt Lake City, UT, USA

Nazli Hossain
Associate Professor and Consultant Obstetrician and Gynaecologist
Department of Obstetrics and Gynaecology Unit III
Dow University of Health Sciences,
Civil Hospital,
Karachi, Pakistan

Kenneth H. Kim
Clinical Instructor
Division of Gynecological Oncology
Department of Obstetrics and Gynecology
James Cancer Hospital and Solove Research Institute
The Ohio State University
Columbus, OH, USA

Chad Kendall Klauser
Assistant Clinical Professor
Mount Sinai School of Medicine
New York, NY, USA

Aristides P. Koutrouvelis
Department of Anesthesiology
University of Texas Medical Branch
Galveston, TX, USA

Hee Joong Lee
Department of Obstetrics and Gynecology
The Catholic University of Korea
Seoul, Korea

William C. Mabie
Professor of Clinical Obstetrics and Gynecology
University of South Carolina
Greenville, SC, USA

Antara Mallampalli
Section of Pulmonary, Critical Care, and Sleep Medicine
Baylor College of Medicine
Houston, TX, USA

James N. Martin, Jr
Professor and Director
Department of Obstetrics and Gynecology
Division of Maternal-Fetal Medicine
University of Mississippi Medical Center
Jackson, MS, USA

Kent A. Martyn
Director of Pharmaceutical Services
Citrus Valley Medical Center
West Covina, CA, USA

Suzanne McMurtry Baird
Assistant Professor
Vanderbilt University School of Nursing
Nashville, TN, USA

Joel Moake
Rice University
Houston, TX, USA

Martin N. Montoro
Departments of Medicine and Obstetrics and Gynecology
Keck School of Medicine
University of Southern California
Los Angeles, CA, USA

Carmen Monzon
Clinical Assistant Professor of Psychiatry and Human Behavior
Alpert Medical School of Brown University
Women and Infants Hospital
Providence, RI, USA

Errol R. Norwitz
Louis E. Phaneuf Professor and Chair
Department of Obstetrics and Gynecology
Tufts University School of Medicine
and Tufts Medical Center
Boston, MA, USA

David M. O’Malley
Assistant Professor
Division of Gynecologic Oncology
Department of Obstetrics and Gynecology
James Cancer Hospital and Solove Research Institute
The Ohio State University
Columbus, OH, USA

Gayle Olson
Department of Obstetrics and Gynecology
Division of Maternal-Fetal Medicine
University of Texas Medical Branch
Galveston, TX, USA

Michelle Y. Owens
Department of Obstetrics and Gynecology
Division of Maternal-Fetal Medicine
University of Mississippi Medical Center
Jackson, MS, USA

Luis D. Pacheco
Assistant Professor
Departments of Obstetrics, Gynecology and Anesthesiology
Maternal-Fetal Medicine - Surgical Critical Care
University of Texas Medical Branch
Galveston, TX, USA
List of Contributors

Michael J. Paidas
Yale Women & Children’s Center for Blood Disorders
Department of Obstetrics, Gynecology and Reproductive Sciences
Yale School of Medicine, New Haven, CT, USA

Teri Pearlstein
Associate Professor of Psychiatry and Human Behavior and Medicine
Alpert Medical School of Brown University Women and Infants Hospital
Providence, RI, USA

Jeffrey P. Phelan
Director of Quality Assurance
Department of Obstetrics and Gynecology
Citrus Valley Medical Center
West Covina and
President and Director
Clinical Research
Childbirth Injury Prevention Foundation
City of Industry
Pasadena, CA, USA

T. Flint Porter
Associate Professor
Department of Obstetrics and Gynecology
University of Utah Health Science, UT and Medical Director
Maternal-Fetal Medicine
Urban Central Region
Intermountain Healthcare
Salt Lake City, UT, USA

Raymond Powrie
Department of Medicine, Obstetrics and Gynecology
Warren Alpert School of Medicine at Brown University
RI, USA

Fidelma B. Rigby
Department of Obstetrics and Gynecology
MFM Division
MCV Campus of Virginia Commonwealth University
Richmond, VA, USA

Scott Roberts
Department of Obstetrics and Gynecology
The University of Texas Southwestern Medical Center (UTSMC) at Dallas
TX, USA

Julian N. Robinson
Associate Clinical Professor
Harvard Medical School
Division of Maternal-Fetal Medicine
Department of Obstetrics, Gynecology and Reproductive Biology
Brigham and Women’s Hospital
Boston, MA, USA

Sheryl Rodts-Palenik
Acadiana Maternal-Fetal Medicine
Lafayette, LA, USA

Roxann Rokey
Director
Department of Cardiology
Marshfield Clinic
Marshfield, WI, USA

David A. Sacks
Department of Research
Southern California Permanente Medical Group
Pasadena, CA, USA

Mark Santillan
Department of Obstetrics and Gynecology
University of Iowa College of Medicine
Iowa City, IA, USA

Anthony Scardella
Professor of Medicine
Division of Pulmonary and Critical Care Medicine
Department of Medicine
University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School
New Brunswick, NJ, USA

William E. Scorza
Chief of Obstetrics
Division of Maternal-Fetal Medicine
Department of Obstetrics
Lehigh Valley Hospital
Allentown, PA, USA

James Scott
Department of Obstetrics and Gynecology
University of Utah, Medical Center
Salt Lake City, UT, USA

Julie Scott
Assistant Professor
Department of Obstetrics and Gynecology
Division of Maternal-Fetal Medicine
University of Colorado Health Sciences Center
Denver, CO, USA

Gail L Seiken
Washington Nephrology Associates
Bethesda, MD, USA

Shailen S. Shah
Director of Operations
Maternal-Fetal Medicine
Virtua Health
 Voorhees, NJ and
Assistant Professor
Thomas Jefferson University Hospital, Philadelphia, PA, USA

Howard T. Sharp
Department of Obstetrics and Gynecology
University of Utah School of Medicine
Salt Lake City, UT, USA

Andrea Shields
Director
Antenatal Diagnostic Center
San Antonio Military Medical Center
Lackland Airforce Base, TX, USA

John C. Smulian
Division of Maternal-Fetal Medicine
Department of Obstetrics and Gynecology
Lehigh Valley Health Network
Allentown, PA, USA

Irene Stafford
Maternal-Fetal Medicine
University of Texas Southwestern Medical Center
Dallas, TX, USA

Shawn P. Stallings
Division of Maternal-Fetal Medicine
Department of Obstetrics and Gynecology
University of Tennessee College of Medicine
Chattanooga, TN, USA

Victor R. Suarez
Maternal-Fetal Medicine Attending
Advocate Christ Medical Center
Chicago, IL, USA

Maya S. Suresh
Professor and Interim Chairman
Department of Anesthesiology
Baylor College of Medicine
Houston, TX, USA

Nan H. Troiano
Clinical Nurse Specialist
Women’s Services
Labor & Delivery and High Risk Perinatal Unit
Inova Fairfax Hospital Women’s Center
Falls Church, Virginia and
Columbia University; New-York Presbyterian Hospital
Department of Obstetrics and Gynecology
Division of Maternal-Fetal Medicine and Consultant, Critical Care Obstetrics
New York, USA

James W. Van Hook
Professor and Director
Department of Obstetrics and Gynecology
Division of Maternal-Fetal Medicine
University of Cincinnati College of Medicine
Cincinnati, OH, USA

Michael W. Varner
Department of Obstetrics and Gynecology
University of Utah Health Sciences Center
Salt Lake City, UT, USA
List of Contributors

Edward W. Veillon, Jr
Fellow
Maternal-Fetal Medicine
University of Mississippi Medical Center
Jackson, MS, USA

Carey Winkler
MFM Physician
Legacy Health Systems
Maternal-Fetal Medicine Department
Portland, OR, USA

Jerome Yankowitz
Department of Obstetrics and Gynecology
University of Iowa College of Medicine
Iowa City, IA, USA
1

Epidemiology of Critical Illness in Pregnancy

Cande V. Ananth¹ & John C. Smulian²

¹Division of Epidemiology and Biostatistics, Department of Obstetrics, Gynecology and Reproductive Sciences, UMDNJ – Robert Wood Johnson Medical School, New Brunswick, NJ, USA
²Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Lehigh Valley Health Network, Allentown, PA, USA

Introduction

The successful epidemiologic evaluation of any particular disease or condition has several prerequisites. Two of the most important prerequisites are that the condition should be accurately defined and that there should be measurable outcomes of interest. Another requirement is that there must be some systematic way of data collection or surveillance that will allow the measurement of the outcomes of interest and associated risk factors. The epidemiologic evaluation of critical illness associated with pregnancy has met with mixed success on all of these counts.

Historically, surveillance of pregnancy-related critical illness has focused on the well-defined outcome of maternal mortality in order to identify illnesses or conditions that might have led to maternal death. Identification of various conditions associated with maternal mortality initially came from observations by astute clinicians. One of the best examples is the link described by Semmelweiss between hand-washing habits and puerperal fever. In most industrial and many developing countries, there are now population-based surveillance mechanisms in place to track maternal mortality. These often are mandated by law. In fact, the World Health Organization uses maternal mortality as one of the measures of the health of a population [1].

Fortunately, in most industrialized nations the maternal mortality rates have fallen to very low levels. Recent statistics for the United States suggest that overall maternal mortality was 11.5 maternal deaths per 100,000 live births during 1991–97 [2]. Despite this impressively low rate of maternal mortality, tracking maternal deaths may not be the best way to assess pregnancy-related critical illnesses since the majority of such illnesses do not result in maternal death. As stated by Harmer [3], “death represents the tip of the morbidity iceberg, the size of which is unknown.” Unlike mortality, which is an unequivocal endpoint, critical illness in pregnancy as a morbidity outcome is difficult to define and, therefore, difficult to measure and study precisely.

There are many common conditions in pregnancy such as the hypertensive diseases, intrapartum hemorrhage, diabetes, thyroid disease, asthma, seizure disorders, and infection that occur frequently and require special medical care, but do not actually become critical illnesses. Most women with these complications have relatively uneventful pregnancies that result in good outcomes for both mother and infant. Nevertheless, each of these conditions can be associated with significant complications that have the potential for serious morbidity, disability and mortality. The stage at which any condition becomes severe enough to be classified as a critical illness has not been clearly defined. However, it may be helpful to consider critical illness as impending, developing, or established significant organ dysfunction, which may lead to long-term morbidity or death. This allows some flexibility in the characterization of disease severity since it recognizes conditions that can deteriorate rather quickly in pregnancy.

Maternal mortality data collection is well established in many places, but specific surveillance systems that track severe complications of pregnancy not associated with maternal mortality are rare. It has been suggested that most women suffering a critical illness in pregnancy are likely to spend some time in an intensive care unit [3–5]. These cases have been described by some as “near-miss” mortality cases [6,7]. Therefore, examination of cases admitted to intensive care units can provide insight into the nature of pregnancy-related critical illnesses and can compliment maternal mortality surveillance. However, it should be noted that nearly two-thirds of maternal deaths might occur in women who never reach an intensive care unit [5].

The following sections review much of what is currently known about the epidemiology of critical illness in pregnancy. Some of the information is based on published studies; however, much of the data are derived from publicly available data that are collected as part of nationwide surveillance systems in the US.
Pregnancy-related hospitalizations

Pregnancy complications contribute significantly to maternal, fetal, and infant morbidity, as well as mortality [8]. Many women with complicating conditions are hospitalized without being delivered. Although maternal complications of pregnancy are the fifth leading cause of infant mortality in the US, little is known about the epidemiology of maternal complications associated with hospitalizations. Examination of complicating conditions associated with maternal hospitalizations can provide information on the types of conditions requiring hospitalized care. In the US during the years 1991–92, it was estimated that 18.0% of pregnancies were associated with non-delivery hospitalization with disproportionate rates between black (28.1%) and white (17.2%) women [9]. This 18.0% hospitalization rate comprised 12.3% for obstetric conditions (18.3% among black women and 11.9% among white women), 4.4% for pregnancy losses (8.1% among black women and 3.9% among white women), and 1.3% for non-obstetric (medical or surgical) conditions (1.5% among black women and 1.3% among white women). The likelihood of pregnancy-associated hospitalizations in the US declined between 1986–87 and 1991–92 [9,10].

More recent information about pregnancy-related hospitalization diagnoses can be found in the aggregated National Hospital Discharge Summary (NHDS) data for 1998–99. These data are assembled by the National Center for Health Statistics (NCHS) of the US Centers for Disease Control and Prevention. The NHDS data is a survey of medical records from short-stay, non-federal hospitals in the US, conducted annually since 1965. A detailed description of the survey and the database can be found elsewhere [11]. Briefly, for each hospital admission, the NHDS data include a primary and up to six secondary diagnoses, as well as up to four procedures performed for each hospitalization. These diagnoses and procedures are all coded based on the International Classification of Diseases, ninth revision, clinical modification. We examined the rates (per 100 hospitalizations) of hospitalizations by indications (discharge diagnoses) during 1998–99 in the US, separately for delivery (n = 7965173) and non-delivery (n = 960023) hospitalizations. We also examined the mean hospital lengths of stay (with 95% confidence intervals, CIs). Antepartum and postpartum hospitalizations were grouped as non-delivery hospitalizations.

During 1998–99, nearly 7.4% of all hospitalizations were for hypertensive diseases with delivery, and 6.6% were for hypertensive diseases not delivered (Table 1.1). Mean hospital length of stay (LOS) is an indirect measure of acuity for some illnesses. LOS was higher for delivery-related than for non-delivery-related hospitalizations for hypertensive diseases. Hemorrhage, as the underlying reason for hospitalization (either as primary or secondary diagnosis), occurred much more frequently for delivery- than non-delivery-related hospitalizations. Non-delivery hospitalizations for genitourinary infections occurred three times more frequently (10.45%) than for delivery-related hospitalizations (3.19%), although the average LOS was shorter for non-delivery hospitalizations.

Hospitalizations for preterm labor occurred twice as frequently for non-delivery hospitalizations (21.21%) than for delivery-related hospitalizations (10.28%). This is expected since many preterm labor patients are successfully treated and some of these hospitalizations are for “false labor.” Liver disorders were uncommonly associated with hospitalization. However, the mean hospital LOS for liver disorders that occurred with non-delivery hospitalizations was over 31 days, compared with a mean LOS of 3 days if the liver condition was delivery related. Coagulation-related defects required 14.9 days of hospitalization if not related to delivery compared with a mean LOS of 4.9 days if the condition was delivery related. Hospitalizations for embolism-related complications were infrequent, but generally required extended hospital stays.

The top 10 conditions associated with hospital admissions, separately for delivery- and non-delivery-related events, are presented in Figure 1.1. The chief cause for hospitalization (either delivery or non-delivery related) was preterm labor. The second most frequent condition was hypertensive disease (7.37% for delivery related and 6.61% for non-delivery related) followed by anemia (7.13% vs 5.05%). Hospitalizations for infection-related conditions occurred twice more frequently for non-delivery periods (11.65%) than during delivery (5.75%). In contrast, hospitalization for hemorrhage was more frequent during delivery (4.43%) than non-delivery (3.26%). These data provide important insights into the most common complications and conditions associated with pregnancy hospitalization. The LOS data also give some indication of resource allocation needs. While this is important in understanding the epidemiology of illness in pregnancy, it does not allow a detailed examination of illness severity.

Maternal mortality

The national health promotion and disease prevention objectives of the Healthy People 2010 indicators specify a goal of no more than 3.3 maternal deaths per 100 000 live births in the US [12]. The goal for maternal deaths among black women was set at no more than 5.0 per 100 000 live births. As of 1997 (the latest available statistics on maternal deaths in the US) this objective remains elusive. The pregnancy-related maternal mortality ratio (PRMR) per 100 000 live births for the US was 11.5 for 1991–97 [13], with the ratio over threefold greater among black compared with white women [14]. Several studies that have examined trends in maternal mortality statistics have concluded that a majority of pregnancy-related deaths (including those resulting from ectopic pregnancies, and some cases of infection and hemorrhage) are preventable [1,15,16]. However, maternal deaths due to other complications such as pregnancy-induced hypertension, placenta previa, retained placenta, and thromboembolism, are considered by some as difficult to prevent [17,18].
From the 1960s to the mid-1980s, the maternal mortality ratio in the US declined from approximately 27 per 100,000 live births to about 7 per 100,000 live births (Figure 1.2). Subsequently, the mortality ratio increased between 1987 (7.2 per 100,000 live births) and 1990 (10.0 per 100,000 live births). During the period 1991–97, the mortality ratio further increased to 11.5 per 100,000 live births—an overall relative increase of 60% between 1987 and 1997. The reasons for the recent increases are not clear. Several maternal risk factors have been examined in relation to maternal deaths. Women aged 35–39 years carry a 2.6-fold (95%
CI 2.2, 3.1) increased risk of maternal death and those over 40 years are at a 5.9-fold (95% CI 4.6, 7.7) increased risk. Black maternal race confers a relative risk of 3.7 (95% CI 3.3, 4.1) for maternal death compared with white women. Similarly, women without any prenatal care during pregnancy had an almost twofold increased risk of death relative to those who received prenatal care [19].

The chief cause for a pregnancy-related maternal death depends on whether the pregnancy results in a live born, stillbirth, ectopic pregnancy, abortion, or molar gestation (Table 1.2). For the period 1987–90, hemorrhage was recorded in 28.8% of all deaths, leading to an overall pregnancy-related mortality ratio (PRMR) for hemorrhage of 2.6 per 100000 live births, followed by embolism-related deaths (PRMR 1.8), and hypertensive diseases (PRMR 1.6). Among all live births, hypertensive diseases (23.8%) were the most frequent cause of death. Among stillbirths (27.2%) and ectopic (94.9%) pregnancies, the chief cause of death was hemorrhage, while infections (49.4%) were the leading cause of abortion-related maternal deaths.

Understanding the epidemiology of pregnancy-related deaths is essential in order to target specific interventions. Improved population-based surveillance through targeted reviews of all pregnancy-related deaths, as well as additional research to understand the causes of maternal deaths by indication will help in achieving the Healthy People 2010 goals.
Table 1.2 Pregnancy-related maternal deaths by underlying cause: USA, 1987–90. From Koonin et al. [53].

<table>
<thead>
<tr>
<th>Cause of death</th>
<th>All outcomes</th>
<th>Outcome of pregnancy (% distribution)</th>
<th>PRMR* (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>Live birth</td>
<td>Stillbirth</td>
</tr>
<tr>
<td>Hemorrhage</td>
<td>28.8</td>
<td>21.1</td>
<td>27.2</td>
</tr>
<tr>
<td>Embolism</td>
<td>19.9</td>
<td>23.4</td>
<td>10.7</td>
</tr>
<tr>
<td>Hypertension</td>
<td>17.6</td>
<td>23.8</td>
<td>26.2</td>
</tr>
<tr>
<td>Infection</td>
<td>13.1</td>
<td>12.1</td>
<td>19.4</td>
</tr>
<tr>
<td>Cardiomyopathy</td>
<td>5.7</td>
<td>6.1</td>
<td>2.9</td>
</tr>
<tr>
<td>Anesthesia</td>
<td>2.5</td>
<td>2.7</td>
<td>0.0</td>
</tr>
<tr>
<td>Others/unknown</td>
<td>12.8</td>
<td>11.1</td>
<td>13.6</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

* Pregnancy-related mortality ratio per 100,000 live births.
† Includes both spontaneous and induced abortions.

Table 1.3 Perinatal mortality rates among singleton and multiple gestations by gestational age and high-risk conditions: USA, 1995–98.

<table>
<thead>
<tr>
<th>High-risk conditions</th>
<th>20–27 weeks</th>
<th>28–32 weeks</th>
<th>33–36 weeks</th>
<th>≥37 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PMR</td>
<td>Relative risk (95% CI)</td>
<td>PMR</td>
<td>Relative risk (95% CI)</td>
</tr>
<tr>
<td>Singleton</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of births</td>
<td>n = 103,755</td>
<td>n = 352,291</td>
<td>n = 1,072,784</td>
<td>n = 13,440,671</td>
</tr>
<tr>
<td>Hypertension</td>
<td>200.4</td>
<td>0.6 (0.5, 0.7)</td>
<td>53.1</td>
<td>0.6 (0.5, 0.6)</td>
</tr>
<tr>
<td>Hemorrhage</td>
<td>308.9</td>
<td>1.1 (1.0, 1.2)</td>
<td>73.1</td>
<td>1.4 (1.3, 1.5)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>287.0</td>
<td>1.0 (0.9, 1.1)</td>
<td>60.8</td>
<td>1.2 (1.1, 1.3)</td>
</tr>
<tr>
<td>SGA</td>
<td>467.4</td>
<td>2.3 (2.1, 2.5)</td>
<td>196.3</td>
<td>6.2 (6.0, 6.4)</td>
</tr>
<tr>
<td>No complications</td>
<td>297.6</td>
<td>1.0 (Referent)</td>
<td>38.8</td>
<td>1.0 (Referent)</td>
</tr>
<tr>
<td>Multiple</td>
<td>n = 23,055</td>
<td>n = 76,329</td>
<td>n = 147,627</td>
<td>n = 187,109</td>
</tr>
<tr>
<td>Hypertension</td>
<td>183.5</td>
<td>0.7 (0.6, 0.8)</td>
<td>21.4</td>
<td>0.5 (0.4, 0.6)</td>
</tr>
<tr>
<td>Hemorrhage</td>
<td>251.6</td>
<td>1.0 (0.9, 1.1)</td>
<td>36.6</td>
<td>1.1 (1.0, 1.3)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>214.9</td>
<td>0.8 (0.7, 1.1)</td>
<td>28.7</td>
<td>0.9 (0.7, 1.2)</td>
</tr>
<tr>
<td>SGA</td>
<td>394.5</td>
<td>2.0 (1.6, 2.4)</td>
<td>133.4</td>
<td>6.8 (6.3, 7.4)</td>
</tr>
<tr>
<td>No complications</td>
<td>251.1</td>
<td>1.0 (Referent)</td>
<td>23.4</td>
<td>1.0 (Referent)</td>
</tr>
</tbody>
</table>

CI, confidence interval; PMR, perinatal mortality rate per 1000 births; SGA, small for gestational age births.
Hypertension includes chronic hypertension, pregnancy-induced hypertension, and eclampsia.
Hemorrhage includes placental abruption, placenta previa, uterine bleeding of undermined etiology.
No complications include those that did not have any complications listed in the table.
Relative risk for each high-risk condition was adjusted for all other high-risk conditions shown in the table.

Perinatal mortality

Perinatal mortality, defined by the World Health Organization as fetal deaths plus deaths of live-born infants within the first 28 days, is an important indicator of population health. Examination of the maternal conditions related to perinatal mortality can provide further information on the association and impact of these conditions on pregnancy outcomes. Table 1.3 shows the results of our examination of perinatal mortality rates among singleton and multiple births (twins, triplets and quadruplets) by gestational age and high-risk conditions. The study population comprises all births in the US that occurred in 1995–98. Data were derived from the national linked birth/infant death files, assembled by the National Center for Health Statistics of the Centers for Disease Control and Prevention [20]. Gestational age
was predominantly based on the date of last menstrual period [21], and was grouped as 20–27, 28–32, 33–36, and ≥37 weeks. Perinatal mortality rates were assessed for hypertensive (chronic hypertension, pregnancy-induced hypertension, and eclampsia), hemorrhage (placental abruption, placenta previa, and uterine bleeding of undetermined etiology), diabetes (pre-existing and gestational diabetes), and small for gestational age (SGA) births (defined as birth weight below 10th centile for gestational age). We derived norms for the 10th centile birth weight for singleton and multiple births from the corresponding singleton and multiple births that occurred in 1995–98 in the US. Finally, relative risks (with 95% CIs) for perinatal death by each high-risk condition were derived from multivariable logistic regression models after adjusting for all other high-risk conditions.

Perinatal mortality rates progressively decline, among both singleton and multiple births, for each high-risk condition with increasing gestational age (Table 1.3). Among singleton and multiple gestations, with the exception of SGA births, mortality rates were generally higher for each high-risk condition, relative to the no complications group. Infants delivered small for their gestational age carried the highest risk of dying during the perinatal period compared with those born to mothers without complications. Among singleton births, the relative risks for perinatal death for SGA infants were 2.3, 6.2, 7.8, and 5.5 for those delivered at 20–27 weeks, 28–32 weeks, 33–36 weeks, and term, respectively. Among multiple births, these relative risks were similar at 2.0, 6.8, 7.5, and 8.6, respectively, for each of the four gestational age categories.

Pregnancy-related intensive care unit admissions

Evaluation of obstetric admissions to intensive care units (ICUs) may be one of the best ways to approach surveillance of critical illnesses in pregnancy. Unfortunately, there are no publicly available population-based databases for obstetric admissions to ICU that provide sufficiently detailed information to allow in-depth study of these conditions. Therefore, it is reasonable to examine descriptive case series to provide information on these conditions. We reviewed 33 studies published between 1990 and 2006 involving 1955111 deliveries and found an overall obstetric-related admission rate to ICU of 0.07–0.89% (Table 1.4). Some of the variation in the rates may be explained by the nature of the populations studied. Hospitals that are tertiary referral centers for large catchment areas typically receive a more concentrated high-risk population. These facilities would be expected to have higher rates of obstetric admissions to an ICU. However, these studies provided sufficient data to allow the exclusion of patients transported from outside facilities. Community-oriented facilities are probably less likely to care for critically ill obstetric patients unless the illnesses develop so acutely that they would preclude transport to a higher-level facility. The largest study of pregnancy-related ICU admissions involved 37 maternity hospitals in Maryland and included hospitals at all care levels [22]. This study found a nearly 30% lower admission rate to ICUs for obstetric patients from community hospitals compared with major teaching hospitals. Another source of variation is the different criteria for admission to the ICU used at different institutions. Finally, there are major differences in the inclusion criteria used for these studies that further contributes to the variability in reported ICU utilization rates.

Reported maternal mortality for critically ill obstetric patients admitted to an ICU is approximately 8.4% (Table 1.4). This reflects the true seriousness of the illnesses of these women. The wide range of mortality from 0% to 33% is due to many factors. Most of the studies were small and just a few deaths may affect rates significantly. The populations studied also differ in underlying health status. Reports from less developed countries had much higher mortality rates. The time period of the study can have an impact. In general, earlier studies had higher maternal mortality rates. These earlier studies represent the early stages of development of care mechanisms for critically ill obstetric patients. They probably reflect part of the “learning curve” of critical care obstetrics, as well as differences in available technology [52]. Regardless, the mortality rate from these ICU admissions is several orders of magnitude higher than the general US population maternal mortality rate of 11.5 per 100,000 live births. Therefore, these cases are a good representation of an obstetric population with critical illnesses.

Illnesses responsible for obstetric intensive care unit admissions

Examination of obstetric ICU admissions provides some insight into the nature of obstetric illnesses requiring critical care. Data were pooled from 26 published studies that provided sufficient details about the primary indication for the ICU admission (Table 1.5). It is no surprise that hypertensive diseases and obstetric hemorrhage were responsible for over 50% of the primary admitting diagnoses. Specific organ system dysfunction was responsible for the majority of the remaining admissions. Of those, pulmonary, cardiac, and infectious complications had the greatest frequency. From these reports, it is apparent that both obstetric and medical complications of pregnancy are responsible for the ICU admissions in similar proportions. There were 16 studies that provided information on 1980 patients as to whether the primary admitting diagnosis was related to an obstetric complication or a medical complication [4,22,23,25,26,36–38,40,42,43,46,49–51,54]. The pooled data indicate that approximately 69.3% (n = 1373) were classified as obstetric related and 30.7% (n = 607) were due to medical complications. These data clearly highlight the complex nature of obstetric critical care illnesses and provide support for a multidisciplinary approach to management since these patients are quite ill with a variety of diseases.
Table 1.4 Obstetric admission rates to an intensive care unit (ICU) and corresponding maternal mortality rates from 33 studies.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Year(s)</th>
<th>Location</th>
<th>Inclusion criteria</th>
<th>Total deliveries</th>
<th>Obstetric ICU Admissions (rate)</th>
<th>Obstetric ICU deaths (rate)</th>
<th>Fetal/neonatal deaths per ICU admissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mabie & Sibai 1990 [22]</td>
<td>1986-89</td>
<td>US</td>
<td>–</td>
<td>22,651</td>
<td>200 (0.88%)</td>
<td>7 (3.5%)</td>
<td>–</td>
</tr>
<tr>
<td>Kilpatrick & Matthay 1992 [23]</td>
<td>1985–90</td>
<td>US</td>
<td>Up to 6 weeks PP</td>
<td>8000*</td>
<td>32 (0.4%)</td>
<td>4 (12.0%)</td>
<td>6 (18.8%)</td>
</tr>
<tr>
<td>El-Soh & Grant 1996 [25]</td>
<td>1989–95</td>
<td>US</td>
<td>Up to 10d PP</td>
<td>–</td>
<td>96 (–)</td>
<td>10/93 (10.8%)</td>
<td>10 (10.4%)</td>
</tr>
<tr>
<td>Monaco et al. 1993 [26]</td>
<td>1983–90</td>
<td>US</td>
<td>16 weeks to 2 weeks PP</td>
<td>15,323</td>
<td>38 (0.25%)</td>
<td>7 (18.4%)</td>
<td>4 (10.5%)</td>
</tr>
<tr>
<td>Panchal et al. 2000 [27]</td>
<td>1984–97</td>
<td>US</td>
<td>Delivering admission</td>
<td>822,591</td>
<td>1023 (0.12%)</td>
<td>34 (3.3%)</td>
<td>–</td>
</tr>
<tr>
<td>Afessa et al. 2001 [28]</td>
<td>1991–98</td>
<td>US</td>
<td>–</td>
<td>–</td>
<td>78 (–)</td>
<td>2 (2.7%)</td>
<td>13 (16.7%)</td>
</tr>
<tr>
<td>Gilbert et al. 2000 [29]</td>
<td>1991–98</td>
<td>US</td>
<td>Up to 6 weeks PP</td>
<td>49,349</td>
<td>233 (0.47%)</td>
<td>8 (3.4%)</td>
<td>–</td>
</tr>
<tr>
<td>Hogg et al. 2000 [30]</td>
<td>1989–97</td>
<td>US</td>
<td>15 weeks to 6 weeks PP</td>
<td>30,405</td>
<td>172 (0.57%)</td>
<td>23 (13.4%)</td>
<td>2 (1.2%)</td>
</tr>
<tr>
<td>Munnr et al. 2005 [31]</td>
<td>1992–2001</td>
<td>US</td>
<td>–</td>
<td>–</td>
<td>58,000</td>
<td>174 (0.3%)</td>
<td>4 (2.3%)</td>
</tr>
<tr>
<td>Mahutte et al. 1999 [4]</td>
<td>1991–97</td>
<td>Canada</td>
<td>14 weeks to 6 weeks PP</td>
<td>44,340</td>
<td>131 (0.30%)</td>
<td>3 (2.3%)</td>
<td>–</td>
</tr>
<tr>
<td>Baskett & Sternadel 1998 [6]</td>
<td>1980–93</td>
<td>Canada</td>
<td>>20 weeks and PP</td>
<td>76,119</td>
<td>55 (0.07%)</td>
<td>2 (3.6%)</td>
<td>–</td>
</tr>
<tr>
<td>Hazzelgrove et al. 2001 [5]</td>
<td>1994–96</td>
<td>England</td>
<td>Up to 6 weeks PP</td>
<td>122,850</td>
<td>210 (0.17%)</td>
<td>7 (3.3%)</td>
<td>40/200 (20.0%)</td>
</tr>
<tr>
<td>DeMello & Restall 1990 [33]</td>
<td>1985–89</td>
<td>England</td>
<td>20–42 weeks</td>
<td>9,425</td>
<td>13 (0.14%)</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>Selo-Ojeme et al. 2005 [34]</td>
<td>1993–2003</td>
<td>England</td>
<td>14 weeks to 6 weeks PP</td>
<td>31,097</td>
<td>22 (0.11%)</td>
<td>1 (4.5%)</td>
<td>1 (4.5%)</td>
</tr>
<tr>
<td>Stephens 1991 [35]</td>
<td>1979–89</td>
<td>Australia</td>
<td>Up to 4 weeks PP</td>
<td>61,435</td>
<td>126 (0.21%)</td>
<td>1 (0.8%)</td>
<td>–</td>
</tr>
<tr>
<td>Tang et al. 1997 [36]</td>
<td>1988–95</td>
<td>China</td>
<td>Up to 6 weeks PP</td>
<td>39,350</td>
<td>49 (0.12%)</td>
<td>2 (4.1%)</td>
<td>4 (8.2%)</td>
</tr>
<tr>
<td>Ng et al. 1992 [37]</td>
<td>1985–90</td>
<td>China</td>
<td>Delivery related</td>
<td>16,264</td>
<td>37 (0.22%)</td>
<td>2 (5.4%)</td>
<td>–</td>
</tr>
<tr>
<td>Cheng & Raman 2003 [38]</td>
<td>1994–1999</td>
<td>Singapore</td>
<td>Up to 1 week PP</td>
<td>13,438</td>
<td>39 (0.28%)</td>
<td>2 (5.1%)</td>
<td>–</td>
</tr>
<tr>
<td>Heinenon et al. 2002 [39]</td>
<td>1993–2000</td>
<td>Finland</td>
<td>18 weeks to 4 weeks PP</td>
<td>23,404</td>
<td>22 (0.14%)</td>
<td>1 (4.5%)</td>
<td>–</td>
</tr>
<tr>
<td>Keizer et al. 2006 [40]</td>
<td>1990–2001</td>
<td>Netherlands</td>
<td>Obstetrics admissions with illness</td>
<td>18,581</td>
<td>142 (0.76%)</td>
<td>7 (4.9%)</td>
<td>35 (24.6%)</td>
</tr>
<tr>
<td>Bouvier-Colle et al. 1996 [41]</td>
<td>1991</td>
<td>France</td>
<td>Up to 6 weeks PP</td>
<td>140,000*</td>
<td>435 (0.31%)</td>
<td>22 (5.1%)</td>
<td>58 (13.3%)</td>
</tr>
<tr>
<td>Koeberle et al. 2000 [42]</td>
<td>1986–96</td>
<td>France</td>
<td>Up to 6 weeks PP</td>
<td>27,059*</td>
<td>46 (0.17%)</td>
<td>2 (4.3%)</td>
<td>–</td>
</tr>
<tr>
<td>Munnr et al. 2005 [31]</td>
<td>1992–2001</td>
<td>India</td>
<td>–</td>
<td>157,694</td>
<td>754 (0.48%)</td>
<td>189 (25%)</td>
<td>368 (48.81%)</td>
</tr>
<tr>
<td>Ryan et al. 2000 [43]</td>
<td>1996–98</td>
<td>Ireland</td>
<td>–</td>
<td>26,164</td>
<td>17 (0.07%)</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>Cohen et al. 2000 [44]</td>
<td>1994–98</td>
<td>Israel</td>
<td>20 weeks to 2 weeks PP</td>
<td>19,474</td>
<td>46 (0.24%)</td>
<td>1 (2.3%)</td>
<td>10 (21.7%)</td>
</tr>
<tr>
<td>Lewinoohn et al. 1994 [45]</td>
<td>8 yrs</td>
<td>Israel</td>
<td>–</td>
<td>–</td>
<td>58 (–)</td>
<td>4 (6.9%)</td>
<td>–</td>
</tr>
<tr>
<td>Loverro et al. 2001 [46]</td>
<td>1987–1998</td>
<td>Italy</td>
<td>–</td>
<td>23,694</td>
<td>41 (0.17%)</td>
<td>2 (4.9%)</td>
<td>5 (12.2%)</td>
</tr>
<tr>
<td>Okafor & Aniebue 2004 [47]</td>
<td>1997–2002</td>
<td>Nigeria</td>
<td>–</td>
<td>6,544</td>
<td>18 (0.28%)</td>
<td>6 (33%)</td>
<td>–</td>
</tr>
<tr>
<td>Demirkiran et al. 2003 [49]</td>
<td>1995–2000</td>
<td>Turkey</td>
<td>–</td>
<td>140,455*</td>
<td>125 (0.89%)</td>
<td>13 (9.6%)</td>
<td>–</td>
</tr>
<tr>
<td>Mirghani et al. 2004 [50]</td>
<td>1997–2002</td>
<td>UAE</td>
<td>–</td>
<td>23,383</td>
<td>60 (0.26%)</td>
<td>2 (3.3%)</td>
<td>–</td>
</tr>
<tr>
<td>Suleiman et al. 2006 [51]</td>
<td>1992–2004</td>
<td>Saudi Arabia</td>
<td>Up to 6 weeks PP</td>
<td>29,432</td>
<td>64 (0.22%)</td>
<td>6 (9.4%)</td>
<td>8/55 (14.5%)</td>
</tr>
<tr>
<td>Summary (pooled data)</td>
<td></td>
<td></td>
<td></td>
<td>1,955,111</td>
<td>4,389 (0.22%)</td>
<td>395/4,718 (8.4%)</td>
<td>640/2,499 (25.6%)</td>
</tr>
</tbody>
</table>

PP, postpartum; (–) indicates data not provided or unable to be calculated (these values excluded from summaries of columns).

* Estimate calculated based on data in paper.

Causes of mortality in obstetric intensive care unit admissions

When specific causes of mortality for the obstetric ICU admissions were reviewed, 26 studies gave sufficient data to assign a primary etiology for maternal death (Table 1.6). Of a total of 138 maternal deaths, over 57% were related to complications of hypertensive diseases, pulmonary illnesses, and cardiac diseases. Other deaths were commonly related to complications of hemorrhage, bleeding into the central nervous system, malignancy, and infection. More importantly, despite an identified primary
Chapter 1

Table 1.5 Complications primarily responsible for admission to the intensive care unit for obstetric patients: data summarized from 26 published studies [4–6,22–26,28,31,32,35–37,39,40,42–51].

<table>
<thead>
<tr>
<th>Category</th>
<th>Category examples</th>
<th>n</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertensive diseases</td>
<td>Eclampsia, pre-eclampsia, HELLP syndrome, hypertensive crisis</td>
<td>1176</td>
<td>37.4</td>
</tr>
<tr>
<td>Hemorrhage</td>
<td>Shock, abruptio placentae, postpartum hemorrhage, accreta, uterine rupture</td>
<td>647</td>
<td>20.6</td>
</tr>
<tr>
<td>Pulmonary</td>
<td>Pulmonary edema, pneumonia, adult respiratory distress syndrome, asthma</td>
<td>287</td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td>- thromboembolic diseases, amniotic fluid embolus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac</td>
<td>Valvular disease, arrhythmia, cardiomyopathy, infarction</td>
<td>187</td>
<td>5.9</td>
</tr>
<tr>
<td>Sepsis/infection</td>
<td>Chorioamnionitis, pyelonephritis, malaria, hepatitis, meningitis, miscellaneous</td>
<td>288</td>
<td>9.2</td>
</tr>
<tr>
<td>Central nervous system</td>
<td>Intracranial hemorrhage, seizure (non-eclamptic), arteriovenous malformation</td>
<td>92</td>
<td>2.9</td>
</tr>
<tr>
<td>Anesthesia complication</td>
<td>Allergic reaction, failed intubation, high spinal</td>
<td>47</td>
<td>1.5</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>Pancreatitis, acute fatty liver of pregnancy, inflammatory bowel disease, gailbladder disease</td>
<td>64</td>
<td>2.0</td>
</tr>
<tr>
<td>Renal</td>
<td>Renal failure</td>
<td>30</td>
<td>1.0</td>
</tr>
<tr>
<td>Hematologic</td>
<td>Thrombotic thrombocytopenic purpura, sickle cell disease, disseminated intravascular coagulation, aspiration</td>
<td>32</td>
<td>1.0</td>
</tr>
<tr>
<td>Endocrine</td>
<td>Diabetic ketoacidosis, thyroid storm</td>
<td>52</td>
<td>1.7</td>
</tr>
<tr>
<td>Malignancy</td>
<td>Various</td>
<td>17</td>
<td>0.5</td>
</tr>
<tr>
<td>Other</td>
<td>Insufficient information to assign to specific organ system but included anaphylaxis, trauma, drug and overdose/poisoning</td>
<td>227</td>
<td>7.2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>3146</td>
<td>100%</td>
</tr>
</tbody>
</table>

etiology for the maternal deaths, nearly all cases were associated with multiorgan dysfunction, which again emphasizes the complex condition of these critically ill women.

As noted earlier, obstetric and medical complications of pregnancy are equally represented in all admissions to the ICU (Table 1.5). However, nearly 40% of all maternal deaths in the ICU were directly related to obstetric conditions (mainly hypertensive diseases, hemorrhage, amniotic fluid embolism and acute fatty liver of pregnancy) with the remaining deaths due to medical conditions (Table 1.6).

Perinatal loss 101st obstetric intensive care unit admissions

When considering the implications of critical illness for obstetric patients, the focus is usually on the mother. However, it is important to re-emphasize that many of these conditions also may have a significant impact on fetal and neonatal outcomes. There is surprisingly little detailed information available on these perinatal outcomes in pregnancies complicated by critical illnesses. However, there are data on perinatal outcomes based on specific disease conditions. Maternal high-risk conditions associated with perinatal mortality in the US are presented in Table 1.3. However, these data do not separate outcomes by severity of maternal illness. We were able to identify 18 studies that provided information on fetal or neonatal mortality rates for obstetric admissions to the ICU (Table 1.4). Fetal and/or neonatal deaths were identified in 640 of the pooled 2499 cases, resulting in an overall mortality rate of 25.6%. Reported rates ranged from 1.2–48.8%. If the large report from India is removed [31], there were 272 of these deaths among 1745 cases, with a mortality rate of 15.6%. These proportions may not reflect a true perinatal mortality rate since some of the losses may have occurred before 20 weeks gestation. In addition, the denominator includes a number of postpartum admissions for conditions not expected to impact fetal or neonatal mortality. Nevertheless, the high loss rate highlights the importance of considering the fetus when managing critical illnesses in pregnancy.

Summary

In summary, understanding the nature of critical illness in pregnancy is an important and evolving process. We have clearly grown beyond simple mortality reviews for assessment of pregnancy-related critical illness. However, our currently available tools and databases for examining these patients still need improvement. Reports of critically ill women admitted to the ICU have further refined our understanding of these diseases. However, targeted surveillance of obstetric ICU admissions is needed to identify variations in care and disease that may affect management. As our understanding of these conditions continues to mature, we will hopefully gain greater insight into the specific nature of these conditions that will lead to improved prevention strategies and better therapies for the diseases when they occur. In our view, these data will improve our ability to plan and allocate the necessary resources to adequately care for these often complex and severe illnesses.